
P R E S E N T E D B Y

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Images courtesy of Sandia National Laboratories and Oak Ridge National Laboratory

Introduction to the Structural
Simulation Toolkit (SST)

S i H a m m o n d a n d C l a y H u g h e s , S c a l a b l e C o m p u t e r A r c h i t e c t u r e s

04/03/2018

SAND2018-3453 PE

Overview of What our Applications Really Look Like…

04/03/2018

2

Vectorization (Per	Rank)	(APEX/Tesserae)

0

2E+12

4E+12

6E+12

8E+12

1E+13

1.2E+13

1.4E+13

Intel 16.2 Intel 17.4 Intel 18.0

In
st

ru
ct

io
ns

Floating Point Intensity

Non-FP Ins Non-Masked FP Ins

Masked FP Ins

0%

20%

40%

60%

80%

100%

Intel 16.2 Intel 17.4 Intel 18.0

Vectorization Breakdown
Scalar FP Ins Masked FP Ins

Non-Masked Vec FP Ins

0%

20%

40%

60%

80%

100%

Intel 16.2 Intel 17.4 Intel 18.0

Vector Op Breakdown

2-Ops 4-Ops 8-Ops 16-Ops

Fairly significant improvement from 16.2 to 17.4 in instruction count, breakdown similar

“Wide vectors (AVX2/AVX512)”

Approx 20% of FP is vectorized Approx 35% is “wide” vectorizedApprox 15% is FP Instruction

The Path to the Hardware of Tomorrow

04/03/2018

3

One Vendor, One Solution (which tries to satisfy everyone)

One vendor integrates everything, one fixed solution for every problem

Probably in the rearview mirror for most of HPC systems now

Little flexibility, less hardware tuning

Take what you get given (usually get lots you don’t want)

The Path to the Hardware of Tomorrow

04/03/2018

4

Multi Vendor, Protocol Integration

Multiple vendors working together, not integrated hardware

Support for a shared protocol

Seeing this with emerging IBM + NVIDIA solutions

CCIX, Gen-Z, OpenCAPI etc

IBM NVIDIA

Source: NVIDIA

The Path to the Hardware of Tomorrow

04/03/2018

5

One Vendor, “Shopping List SoC”

Buy a solution from one vendor from an IP catalogue

Cherry pick components which are optimized/appropriate for your workload

Complex task for mixed workload environments like DOE (not easy)

Does one vendor have everything you need?

Google TPU

Source: Google

The Path to the Hardware of Tomorrow

04/03/2018

6

Customer + Silicon Provider SoC

Custom IP included in SoC

Becomes true plug and play for hardware, allows customization where
workload permits

Issue is validation. Open source hardware/HPC has a role to play

Apple A12 SoC

Photo: Apple

The Path to the Hardware of Tomorrow

04/03/2018

7

Conventional IP Library + Non-Conventional IP in SoC

Emergence of non-conventional IP (quantum, neuromorphic, etc) in a single SoC

Possible from IP catalogue but could be custom/open source components

Potentially greater optimization across complex workloads

Thoughts on the Long Term Path

04/03/2018

8

Exciting to see huge potential far in the future for HPC
◦ The best of HPC really is yet to come, this is just the beginning

But .. this is a really complex path to follow

Needs a very good understanding of workloads, not just hardware
Diverse and flexible IP catalogue (commercial and open source)
Validation is the challenge (particularly for real solutions in HPC space)

Significant upside for some workloads but not all
Gives life into silicon even when Moore’s law finally is dead!

But You’re Supposed to be Talking about SST…

04/03/2018

9

In order to realize such a diverse hardware-jungle future, we need a really
flexible, agile way to simulate/emulate potential future systems

In an ideal world:

◦ Very fast to execute simulator
◦ Broad cross-section models
◦Models that play well together
◦ Extensible as new ideas emerge

Overview of SST

04/03/20
18

Why SST?11

Problem: Simulation is slow
◦ Tradeoff between accuracy and time to simulate
◦Many simulators are serial, unable to simulate very large systems

Problem: Lack of simulator flexibility
◦ Tightly-coupled simulations: Difficult to modify
◦ Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:

A parallel, discrete-event simulation framework

for scalability and flexibility

04/03/2018

What is SST?12

Goals
• Become the standard architectural simulation

framework for HPC
• Be able to evaluate future systems on DOE/DOD

workloads
• Use supercomputers to design supercomputers

Status
• Parallel Core, basic components
• Current Release (7.2)

• Improved components
• Modular core/elements
• More Internal documentation

Technical Approach
• Parallel

• Parallel Discrete Event core with conservative
optimization over MPI/Threads

• Multiscale
• Detailed and simple models for processor, network,

& memory
• Interoperability

• DRAMSim, ,memory models
• routers, NICs, schedulers

• Open
• Open Core, non-viral, modular

Consortium
• “Best of Breed” simulation suite
• Combine Lab, Academic & Industry

04/03/2018

Key Capabilities13

Parallel
◦ Built from the ground up to be scalable
◦ Demonstrated scaling to 512+ host processors
◦ Conservative, Distance-based Optimization
◦MPI + Threads

Flexible
◦ Enables “mix and match” of simulation components
◦Multiscale tradeoff between accuracy and simulation time
◦ e.g., cycle-accurate network with trace-driven endpoints

◦ Open API
◦ Easily extensible with new models
◦ Modular framework
◦ Open-source core (but BSD licensed so works with commercial partners too)

04/03/2018

SST’s Discrete-Event Algorithm14

Simulations are comprised of components connected by links

Components interact by sending events over links

Each link has a minimum latency

Components can load SubComponents andmodules for additional functionality

Component Component

SST Core

Configuration

Parititioning

Link

Event

Instantiation Time

Coordination

Parallel

Communication

SST

Component

Type: Core

SST

Component

Type: Cache

SST

Component

Type: Core

SST

Component

Type: Cache

SST

Component

Type: NoC

Router

SST

Component

Type: NoC

Router

SST Link

Latency: 1ns

SST Link

Latency: 2ns

SST Link

Latency: 2ns

SST Link

Latency: 1ns

S
S
T

 L
in

k

L
a
t
e
n
c
y
:

4
n
s

04/03/2018

Key Simulation Objects15

SST::Component
◦ Simulation model

SST::Link
◦ Communication path between two components
◦ Has optional EventHandler

SST::Event
◦ A discrete event

SST::Clock::Handler
◦ Function to handle a clock tick

SS
T:
:L
in
k

SST::Component

CPU

EventHandler

SST::Component

Cache

EventHandler

SST::Event

Load

04/03/2018

Component16

Basic building block of a simulation modelà Performs actual simulation
◦ e.g., processor, cache, network router, etc.

Uses Links and Ports to communication with other components
◦ Components define ports, links connect ports between components
◦ Polled: Register a clock handler to poll the link
◦ Interrupt: Register an event handler to be called when an event arrives
◦ Both: Receive events on interrupt, send events on clock

04/03/2018

Link17

Connects two components
◦ Connect a specific “Port” on component A to a “Port” on component B

The ONLY mechanism by which components communicate
◦ Necessary for parallel simulation

Has a minimum, non-zero latency for communication
◦ Except self-links
◦ Except during initialization (untimed)

Transparently handles any MPI / threaded communication

Component A Component B

P
o
r
t
 X

P
o
r
t
 Y

Link 1

04/03/2018

Event18

Unit of communication between two components
◦ Packet format is up to the communicating components

Some standardized interfaces
◦ Facilitate “mix and match” capability
◦ sst/core/interfaces/
◦Memory (simpleMem)
◦ Defines commands & event format for communication with memory

◦ Network (simpleNetwork)
◦ Defines a header for events sent through a network component

04/03/2018

Simulation lifecycle19

Birth
◦ Create graph of components using Python configuration file
◦ Partition graph and assign components to MPI ranks
◦ Instantiate components and connect via links
◦ Initialize components using their init() functions
◦ Setup components using their setup() functions

Life
◦ Send events
◦Manage clock and event handlers

Death
◦ Finalize components using their finish() functions
◦ Output statistics
◦ Cleanup simulation, delete components

04/03/2018

Example Studies

04/03/20
18

IBM Memory Controller Design

04/03/2018

21

Improvements to IBM CramSim to enable
threaded simulations (faster analysis time)

Improved multi-level memory models

Performance and scaling improvements
(event-driven (clock-less) memory models)

Scratchpad support

New TLB model Processor

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

Stacked DRAM

MLM Controller

SRAM
Mapping

Table
Policy

Dispatcher

DMA UnitDMA Unit

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

(Cache)

Network Bandwidth Tapering

04/03/2018

22

Questions that most frequently come up in DOE procurements

Unstructured nearest neighbor study shows little sensitivity to tapering (save money)

Multi-Level Memory/PIM Analysis

04/03/2018

23

Processing-in-memory
Multi-Level Memory
◦ HW Tradeoffs: capacity ratios,
◦ SW Tradeoffs: application, runtime, OS,
HW control

Scalable Network Studies
◦ Network on Chip
◦ Cache coherency

Scheduling

1 1 1 1 1

0.67

0.84

0.99

0.50 0.54

0.69

0.84

1.07

0.50 0.54

0

0.275

0.55

0.825

1.1

1.375

GUPS Stream PF MiniFE Lulesh

PIM Normalized Execution Time

Deep(er) Dive on SST

04/03/20
18

SST in Parallel25

SST was designed from the ground up to enable
scalable, parallel simulations

Components are distributed among MPI ranks &
threads

Links allow parallelism
◦ Hence, components should communicate via links only
◦ Transparently handle any MPI communication
◦ Specified link-latency determines MPI synchronization
rate

MPI Rank 0

MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file

04/03/2018

SST Discrete Event Algorithm

SST Simulation are comprised of components connected by links

Components interact by ending events over links

Each link has a minimum latency (specified in SI time units)

04/03/2018

26

Existing SST Element Libraries27

Detailed Memory
Models

Dynamic Trace-based
Processor Model

Cycle-based Processor
Model

High-level Program
Communication

Models

Cycle-based Network
Model

High-level System
Workflow Model

04/03/2018

§ memHierarchy - Cache and Memory
§ cassini - Cache prefetchers
§ DRAMSim - DDR
§ NVDIMMSim - Emerging Memories
§ Goblin – HMC

§ ariel - PIN-based Tracing

§ m5C - Gem5 integration layer

§ ember - State-machine Message generation
§ firefly - Communication Protocols
§ hermes - MPI-like interface

§ Merlin - Network router model and NIC

§ scheduler - Job-scheduler simulation models

New Additions to SST: Core28

1. Overhaul of the SST element information description system

2. Improved external component support (much easier to support than external
development community)

3. HDF5 & JSON support for statistics output

4. Improved thread scaling

5. Easier Builds (removed Boost Dependency)

6. Early support for running SST on IBM POWER

7. Implementation of a “stop at” wall time feature for working within scheduled
cluster environments

8. Support for describing co-ordinates of components in Python configuration (for
visualizations)

04/03/2018

New Additions to SST29

1. Support for memory modeling in large-scale
network analysis

2. Early support for some SHMEM based
communication models (in progress)

3. Juno Processor Model
◦ Simplified processor model
◦ Designed for extensibility
◦ Uses: Tutorial, Correctness checking

User
BinaryEngine

Communication

NIC

Merlin Network

Application SM

MemHierarchy

04/03/2018

New Additions : Memory30

1. Improvements to IBM CramSim for enabling
threaded simulations

2. Improved multi-level memory models

3. Performance and scaling improvements (event-
driven (clock-less) memory models)

4. Scratchpad support

5. New TLB model
Processor

DRAM
Die

DRAM
Die

DRAM
Die

DRAM
Die

Stacked DRAM

MLM Controller

SRAM
Mapping

Table
Policy

Dispatcher

DMA UnitDMA Unit

NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

(Cache)

04/03/2018

New Additions : SST/Macro31

1. Macro / Merlin Integration

2. Beta release of OTF2 trace replay skeleton

3. Beta release of Clang-based auto-skeletonization source-to-source tools

4. Integrated job launcher components for simulating PBS or SLURM-like batch
systems

04/03/2018

NIC Merlin NetworkMacro Endpoint

New Additions : Components : Messier32

Messier: NV Memory model

Focus on NV-DIMMs e.g.:
◦ # Banks, Latencies
◦ Row buffers, write buffers
◦ policies, outstanding requests, ordering
◦ Address mapping

NVM-Based DIMM

NVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM Chip

Rank

Bank

NVM Internal
Controller

Write
Buffer

Outstanding
Requests Tracker

Request
Buffer Scheduler

Wear
Leveler

Power
Manager

NVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM ChipNVM Chip

Rank

transactions

Memory Controller Backend

Write Buffer

Rank Rank

1 If (size > threshold and writes are less than max)
 flush one write entry

2 find a transaction ready to execute

Outstanding

3 Add the dispatched transaction to outstanding
and execute it

ready_trans

write request

read request

04/03/2018

Report: SAND2017-1830

More SST Use Cases33
NVM-Based DIMM

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

Rank

Bank

NVM Internal
Controller

Write
Buffer

Requests
Tracker

Request
Buffer Scheduler

Wear
Leveler
Power

Manager

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

NVM
Chip

Rank

Memory Bus

Network

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory Network

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory

P

Scratch

P P

"$"

Fast

Slow
Memory

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR
Directory
Controller

Logic
Layer

Stacked
Vault

L3

L2

L1

L0

Emerging NVM
Technologies

Photonic Network
Topology & Routing

Multi-Level Memory
(HBM+DDR+NV)

Dissaggregated Memory

04/03/2018

Future Directions34

HDL Simulation via Verilator & Chisel
◦ Low-level hardware design
◦ Path to tape-out (Chisel)

New Processor Models
◦ RISC V
◦ Juno

Improved NoC Models
◦ Faster Performance
◦ NoC QoS
◦ Optical Circuit Routing

04/03/2018

Future Directions: Neural Inspired35

Custom processors / accelerators
Generic models (e.g. NEST, N2A)
Explore
◦ System Integration Issues
◦ Architectural Bottlenecks
◦ Programmability

Allows…
◦ Exploration of conventional / Neural interface (e.g. different
message routing protocols)

◦ Allows Neural “cores” to connect to conventional processors,
network, memory, etc… (explore ’speeds and feeds’)

◦ Scalability: SST can utilize thread- and MPI-level parallelism

CrossSim
set_matrix()
run_xbar()

etc...

Xyce

Neuron
Model

CrossSim SST
Component

CrossSim SST Component

Network
Interface

Buffers

Control
Unit

State machine?

Network
Memory

CPU

Dedicated
Activation

HW

Dedicated
Activation

HW

.py
SST Config

Conv.
Proc NetMemNeural

Core

.py
PYNN
Config

04/03/2018

Future Directions: More Framework Integration36

Beyond Moore Computing
◦ New Architectures (e.g. Neuromorphic)
◦ New Devices (e.g. Memristor)
◦ New Programming Models / Algorithms

Requires Cross-Stack Optimization
◦ Device to System Level
◦ Use of Dakota / INDRA to automate design space exploration

Requires Inter-disciplinary approach
◦ SST Simulator as “Clearinghouse of Ideas”
◦ Common language of exploration

SST

Optimization Framework

Component
Register File

Cache
Bus

System Network Topology
File I/O

Node/Board CPU
GPU

Circuit Logic Gate
Memory Cell

Device Transistor

Chip /
Package

SoC
Stacked Memory

Dakota

04/03/2018

Conclusion37

SST is a Parallel, Flexible, Open architectural simulator

Large library of Memory, Processor, Network, and other models

7.1 Release
◦ Usability enhancements in the Core
◦ New Memory, Network, Processor models

Future SST
◦More & better components (RISC-V, Network, etc…)
◦ Chisel, Occam integration
◦ Beyond Moore Framework
◦ <Your Use Case Here>

04/03/2018

Configuring a Simulation

Configuring a Simulation39

SST uses a Python configuration file
◦ Defines global parameters for the simulation
◦ Defines and configures components
◦ Specifies links and link latencies between components

CPU CPU

L1 L1

Bus

L2

CPU CPU

L1 L1

L2

Bus

Network

Memory

Directory

Memory

Directory

04/03/2018

Part 1: Configure SST40

Global simulation parameters

sst.setProgramOption(“stopAtCycle”, “100ms”)
◦ Kill simulation (nicely!) if it runs to 100ms

sst.setProgramOption(“timebase”, “1ns”)
◦ Tell SST that we’re simulating at a granularity around 1ns
◦ Used by SST core when time units are not specified by a component
◦ Not a lower limit! (clocks can be > 1 GHz)

04/03/2018

Part 2: Define components41

Define: sst.Component(“name”, “type”)

Configure: addParams ({ “parameter” : value, … })

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B:
“topology” : “merlin.singlerouter”,
“id” : “0”,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Component name Component type

Parameters

demo.py: line 172

04/03/2018

SSTInfo: Getting component info42

Prints parameters, port names, and statistics

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
==
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific
component

Parameter Definition

“REQUIRED” or
default value

Port name

Definition

Type of event(s) used on the link

04/03/2018

Part 3: Defining links43

Example: Connect socket 0’s L2 cache (l2cache0) to network
◦ Create a link: sst.Link(“name”)
◦ Define link endpoints: connect(endpoint1, endpoint2)
◦ Endpoint is defined as: (Component, Port, Latency)
◦ Note: Latencies of the two endpoints can differ

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “50ps”),
(network, “port0”, “50ps”))

…

Link name

Endpoints

demo.py: line 220

04/03/2018

Running SST44

Usage: sst [options] configFile.py

Common options:
-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in
“Dot” format to <filename>

04/03/2018

Running a Simulation45

Launch simulation

Output

$ sst demo.py

Inserting stop event at cycle 100ms, 100000000000
ARIEL-SST PIN tool activating with 4 threads
ARIEL: Default memory pool set to 0
ARIEL: Tool is configured to begin with profiling immediately.
ARIEL: Starting program.
Performing iteration 0
Performing iteration 0
Performing iteration 0
Performing iteration 0
…
…
Simulation is complete, simulated time: 125.209 us

04/03/2018

Finally: Getting help46

SST wiki contains lots of information (www.sst-simulator.org)
◦ Downloading, installing, and running SST
◦ Element libraries and external components
◦ Guides for extending SST
◦ Information on APIs
◦ Information about current development efforts

https://github.com/sstsimulator

04/03/2018

https://github.com/sstsimulator

04/03/2018

47

Getting and installing SST48

www.sst-simulator.org
◦ Current release (7.1) source download
◦ https://github.com/sstsimulator/sst-elements

◦ Detailed build instructions including dependencies for Linux & Mac
◦ Links to mailing lists for updates and support

http://www.sst-simulator.org/
https://github.com/sstsimulator/sst-elements

MemHierarchy: Cache structure49

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in

the MSHRs
• Manages cache allocations and

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events

• Forwarded requests, responses, etc.
• Decides when events need to stall

MSHRs
• Buffers stalled

and blocked
events

CacheArray
• Stores cache lines –

data and coherence
state

• Replacements via the
replacement policy
manager

MemHierarchy: Main memory50

MemoryController
◦ Contains a ‘backing store’ for simulated data
◦ Can communicate over a network or via a direct link with a cache or directory
◦ Interfaces with multiple memory backends

Available backends
◦ SimpleMem – basic read/write with associated latencies
◦ DRAMSim2 – DRAM (external)
◦ NVDIMMSim – Non-volatile memory (e.g., Flash) (external)
◦ HybridSim – non-volatile memory with a DRAM cache (external)
◦ VaultSimC – stacked DRAM

Merlin: Network simulator51

Low-level, flexible networking components that can be used to simulate high-speed
networks (machine level) or on-chip networks

Capabilities
◦ High radix router model (hr_router)
◦ Topologies – mesh, n-dim tori, fat-tree, dragonfly

Many ways to drive a network
◦ Simple traffic generation models
◦ Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

◦MemHierarchy
◦ Lightweight network endpoint models (Ember – coming up next)
◦ Or, make your own

Ember: Network traffic generator52

Light-weight endpoint for modeling network traffic
◦ Enables large-scale simulation of networks where detailed modeling of endpoints would
be expensive

Packages patterns as motifs
◦ Can encode a high level of complexity in the patterns
◦ Generic method for users to extend SST with additional communication patterns

Intended to be a driver for the Hermes, Firefly, and Merlin communication modeling
stack
◦ Uses Hermes message API to create communications
◦ Abstracted from low-level, allowing modular reuse of additional hardware models

Ember: Overview53

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

Ember: Motifs54

Motifs are lightweight patterns of communication
◦ Tend to have very small state
◦ Extracted from parent applications
◦Models as an MPI program (serial flow of control)
◦ Many motifs acting in the simulation create the parallel behavior

Example motifs
◦ Halo exchanges (1, 2, and 3D)
◦MPI collections – reductions, all-reduce, gather, barrier
◦ Communication sweeping (Sweep3D, LU, etc.)

Ember: Motifs (continued)55

The EmberEngine creates and manages the motif
◦ Creates an event queue which the motif adds events to when probed
◦ The Engine executes the queued events in order, converting them to message semantic
calls as needed

◦When the queue is empty, the motif is probed again for events

Events correspond to a specific action
◦ E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

Firefly: Network traffic56

Purpose: Create network traffic, based on application communication patterns, at
large scale
◦ Enables testing the impact of network topologies and technologies on application
communication at very large scale

Scales to 1 million nodes

Supports multiple “cores” per Node
◦ Interaction between cores limited to message passing

Supports space sharing of the network
◦Multiple “apps” running simultaneously

Firefly: Simulating large networks 57

A network node consists of
◦ Driver (the “application”)
◦ NIC
◦ Router

Nodes are connected together via the routers to form the network
◦ Fat tree, torus, etc.

Firefly is the interface between the driver and the router
◦Message passing libraryà Firefly Hades
◦ NICà Firefly NIC

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router

Scheduler58

Models HPC system-wide job scheduling

Three components
◦ Sched: schedules and allocates resources for a stream of jobs
◦ Node: runs scheduled jobs on their allocated resources
◦ FaultInjection: injects failures onto the resources

The scheduler is currently a stand-alone element library
◦ The schedComponent and nodeComponent must be used together
◦ The faultInjectionComponent is optional

